Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurol Sci ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441788

RESUMO

INTRODUCTION: Mutations in JAM2 have been linked to ~ 2% of primary familial brain calcification (PFBC) cases. PFBC is a rare neurological disorder characterized by excessive calcium deposition in the brain. It causes movement disorders and psychiatric problems. Six other genes were identified as causing PFBC. However, the genetic basis of ~ 50% of PFBC cases remains unknown. This study presented the results of a comprehensive analysis of five unrelated Iranian PFBC families. METHODS: Clinical and paraclinical features of all patients were recorded. Whole-exome sequencing (WES) was done on the DNAs of probands. Data was analyzed, and haplotypes were determined. RESULTS: WES identified two homozygous variants in JAM2 across four families: a novel variant, c.426dup:p.Ser143Leufs*23, in one family and a known mutation, c.685C > T:p.Arg229*, in the remaining three families. Haplotype analysis using six intragenic single-nucleotide polymorphisms (SNPs) in JAM2 revealed an identical haplotype in probands who carried the same mutation, whereas two other probands presented diverse haplotypes. CONCLUSION: Based on our results, p.Arg229* may be a founder mutation in the Iranian population. The variant has been detected in two out of seven other reported JAM2-related families who may originate from the Middle East and exhibit an identical haplotype. Even though this particular mutation may not be classified as a founder mutation, it does appear to be a hotspot, given that it has been observed in 45% of the 11 JAM2-associated families. Our study expanded the clinical features and mutation spectrum of JAM2 and revealed that mutations in JAM2 may be more common than previously reported.

2.
Orphanet J Rare Dis ; 19(1): 113, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475910

RESUMO

BACKGROUND: Congenital myasthenic syndrome (CMS) is a group of neuromuscular disorders caused by abnormal signal transmission at the motor endplate. Mutations in the collagen-like tail subunit gene (COLQ) of acetylcholinesterase are responsible for recessive forms of synaptic congenital myasthenic syndromes with end plate acetylcholinesterase deficiency. Clinical presentation includes ptosis, ophthalmoparesis, and progressive weakness with onset at birth or early infancy. METHODS: We followed 26 patients with COLQ-CMS over a mean period of 9 years (ranging from 3 to 213 months) and reported their clinical features, electrophysiologic findings, genetic characteristics, and therapeutic management. RESULTS: In our population, the onset of symptoms ranged from birth to 15 years. Delayed developmental motor milestones were detected in 13 patients (∼ 52%), and the most common presenting signs were ptosis, ophthalmoparesis, and limb weakness. Sluggish pupils were seen in 8 (∼ 30%) patients. All patients who underwent electrophysiologic study showed a significant decremental response (> 10%) following low-frequency repetitive nerve stimulation. Moreover, double compound muscle action potential was evident in 18 patients (∼ 75%). We detected 14 variants (eight novel variants), including six missense, three frameshift, three nonsense, one synonymous and one copy number variation (CNV), in the COLQ gene. There was no benefit from esterase inhibitor treatment, while treatment with ephedrine and salbutamol was objectively efficient in all cases. CONCLUSION: Despite the rarity of the disease, our findings provide valuable information for understanding the clinical and electrophysiological features as well as the genetic characterization and response to the treatment of COLQ-CMS.


Assuntos
Síndromes Miastênicas Congênitas , Oftalmoplegia , Recém-Nascido , Humanos , Síndromes Miastênicas Congênitas/genética , Acetilcolinesterase/genética , Acetilcolinesterase/uso terapêutico , Irã (Geográfico) , Variações do Número de Cópias de DNA , Proteínas Musculares/genética , Mutação , Colágeno/genética , Colágeno/uso terapêutico
3.
Can J Neurol Sci ; : 1-9, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532569

RESUMO

BACKGROUND: Mucolipidosis type IV (MLIV) is a rare, progressive lysosomal storage disorder characterized by severe intellectual disability, delayed motor milestones and ophthalmologic abnormalities. MLIV is an autosomal recessive disease caused by mutations in the MCOLN1 gene, encoding mucolipin-1 which is responsible for maintaining lysosomal function. OBJECTIVES AND METHODS: Here, we report a family of four Iranian siblings with cognitive decline, progressive visual and pyramidal disturbances, and abnormal movements manifested by severe oromandibular dystonia and parkinsonism. MRI scans of the brain demonstrated signal abnormalities in the white matter and thinning of the corpus callosum. RESULTS AND CONCLUSIONS: Whole-exome sequencing identified a novel homozygous variant, c.362C > T:p. Thr121Met in the MCOLN1 gene consistent with a diagnosis of MLIV. The presentation of MLIV may overlap with a variety of other neurological diseases, and genetic analysis is an important strategy to clarify the diagnosis. This is an important point that clinicians should be familiar with. The novel variant c.362C > T:p. Thr121Met herein described may be related to a comparatively older age at onset. Our study also expands the clinical spectrum of MLIV associated with the MCOLN1 variants and introduces a novel likely pathogenic variant for testing in MLIV cases that remain unresolved.

5.
Mol Syndromol ; 14(6): 477-484, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058755

RESUMO

Introduction: In human genetic disorders, copy number variations (CNVs) are considered a considerable underlying cause. CNVs are generally detected by array-based methods but can also be discovered by read-depth analysis of whole-exome sequencing (WES) data. We performed WES-based CNV identification in a cohort of 35 Iranian families with hereditary spastic paraplegia (HSP) patients. Methods: Thirty-five patients whose routine single-nucleotide variants (SNVs) and insertion/deletion analyses from exome data were unrevealing underwent a pipeline of CNV analysis using the read-depth detection method. Subsequently, a comprehensive search about the existence of CNVs in all 84 known HSP-causing genes was carried out in all reported HSP cases, so far. Results and Discussion: CNV analysis of exome data indicated that 1 patient harbored a heterozygous deletion in exon 17 of the SPAST gene. Multiplex ligation-dependent probe amplification analysis confirmed this deletion in the proband and his affected father. Literature review demonstrated that, to date, pathogenic CNVs have been identified in 30 out of 84 HSP-causing genes (∼36%). However, CNVs in only 17 of these genes were specifically associated with the HSP phenotype. Among them, CNVs were more common in L1CAM, PLP1, SPAST, SPG7, SPG11, and REEP1 genes. The identification of the CNV in 1 of our patients suggests that WES allows the detection of both SNVs and CNVs from a single method without additional costs and execution time. However, because of intrinsic issues of WES in the detection of large rearrangements, it may not yet be exploited to replace the CNV detection methods in standard clinical practice.

6.
Mol Syndromol ; 14(5): 405-415, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915394

RESUMO

Introduction: Homozygous and compound heterozygous variants in GJC2, the gene encoding connexin-47 protein, cause Pelizaeus-Merzbacher-like disease type 1 or hypomyelinating leukodystrophy 2 (HLD2), a severe infantile-onset hypomyelinating leukodystrophy, and rarely some milder phenotypes like hereditary spastic paraplegia (HSP) type 44 (SPG44) and subclinical leukodystrophy. Herein, we report an Iranian GJC2-related family with intrafamilial phenotypic heterogeneity and review the literatures. Methods: Whole-exome sequencing was performed for an Iranian proband, who was initially diagnosed as HSP case. Data were analyzed and the candidate variant was confirmed by PCR and Sanger sequencing subsequently checked in family members to co-segregation analysis. A careful clinical and paraclinical evaluation of all affected individuals of the family was done and compared with previous reported GJC2-related families. Results: A novel homozygous variant, c.G14T:p.Ser5Ile, in the GJC2 gene was identified. The variant was co-segregated with the disease status in the family members. Clinical evaluation of all patients showed two distinct GJC2-related phenotypes in this family; the proband presented a complicated form of HSP, whereas both his affected sisters presented a HLD2 phenotype. Discussion: Up to now, correlation between HSP and GJC2 variants has been reported once. Here, the second case of SPG44 was identified that emphasizes on GJC2 as a HSP-causing gene. So, the screening of GJC2 in patients with HSP or HSP-like phenotypes especially with hypomyelination in their brain MRI is recommended. Also, for the first time, intrafamilial phenotypic heterogeneity for "two distinct GJC2-related phenotypes: HLD2 and HSP" was reported. Such intrafamilial phenotypic heterogeneity for GJC2 can emphasize on the shared pathophysiology of these disorders.

7.
Neurol Sci ; 44(12): 4359-4362, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37410270

RESUMO

BACKGROUND: NBIA (neurodegeneration with brain iron accumulation) is a diverse collection of neurodegenerative illnesses defined by iron accumulation in the basal ganglia. The fatty acid hydroxylase-associated neurodegeneration, or FAHN, is one of the uncommon subtypes of NBIAs, associated with inherited autosomal recessive mutations in gene coding the membrane-bound fatty acid 2 hydroxylase (FA2H) enzyme. CASES: Here, we report two cases with FAHN from two unrelated families from Iran confirmed by whole exome sequencing. CONCLUSION: FAHN is an uncommon variant of NBIA that may manifest as spastic paraparesis without signs of iron buildup on brain imaging. As a result, it should be taken into account while making a differential diagnosis of the hereditary spastic paraplegia (HSP) syndrome, especially in individuals who lack iron deposits.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso , Neurodegeneração Associada a Pantotenato-Quinase , Paraplegia Espástica Hereditária , Humanos , Encéfalo/diagnóstico por imagem , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Irã (Geográfico) , Ferro , Mutação/genética , Neurodegeneração Associada a Pantotenato-Quinase/genética , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética
8.
Neuromuscul Disord ; 33(4): 295-301, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871412

RESUMO

In the NAD biosynthetic network, the nicotinamide mononucleotide adenylyltransferase (NMNAT) enzyme fuels NAD as a co-substrate for a group of enzymes. Mutations in the nuclear-specific isoform, NMNAT1, have been extensively reported as the cause of Leber congenital amaurosis-type 9 (LCA9). However, there are no reports of NMNAT1 mutations causing neurological disorders by disrupting the maintenance of physiological NAD homeostasis in other types of neurons. In this study, for the first time, the potential association between a NMNAT1 variant and hereditary spastic paraplegia (HSP) is described. Whole-exome sequencing was performed for two affected siblings diagnosed with HSP. Runs of homozygosity (ROH) were detected. The shared variants of the siblings located in the homozygosity blocks were selected. The candidate variant was amplified and Sanger sequenced in the proband and other family members. Homozygous variant c.769G>A:p.(Glu257Lys) in NMNAT1, the most common variant of NMNAT1 in LCA9 patients, located in the ROH of chromosome 1, was detected as a probable disease-causing variant. After detection of the variant in NMNAT1, as a LCA9-causative gene, ophthalmological and neurological re-evaluations were performed. No ophthalmological abnormality was detected and the clinical manifestations of these patients were completely consistent with pure HSP. No NMNAT1 variant had ever been previously reported in HSP patients. However, NMNAT1 variants have been reported in a syndromic form of LCA which is associated with ataxia. In conclusion, our patients expand the clinical spectrum of NMNAT1 variants and represent the first evidence of the probable correlation between NMNAT1 variants and HSP.


Assuntos
Amaurose Congênita de Leber , Nicotinamida-Nucleotídeo Adenililtransferase , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , NAD , Mutação , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/genética , Linhagem , Nicotinamida-Nucleotídeo Adenililtransferase/genética
9.
Neurol Sci ; 43(6): 3847-3855, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35034233

RESUMO

INTRODUCTION: Lafora disease (LD) is a severe form of progressive myoclonus epilepsy characterized by generalized seizures, myoclonus, intellectual decline, ataxia, spasticity, dysarthria, visual loss, and in later stages, psychosis and dementia. To date, mutations in the EPM2A and EPM2B/NHLRC1 genes have been identified as the common causes of LD. However, a mutation in PRDM8 has been reported only once in a Pakistani family affected with early-onset Lafora disease. In the present study, we report the second family with a PRDM8 mutation. METHODS: Two affected individuals of an Iranian family initially diagnosed as complicated hereditary spastic paraplegia (HSP) underwent careful neurologic examination. Homozygosity mapping and whole-exome sequencing were performed. Based on the results of genetic analysis to detection of Lafora bodies, a skin biopsy was done. RESULTS: The clinical features of the patients were described. Linkage to chromosome 4 and a mutation in the PRDM8 gene were identified, suggesting the patients may be affected with early-onset LD. However, like the Pakistani family, the search for Lafora bodies in their skin biopsies was negative. Their electroencephalograms showed generalized epileptiform discharges in the absence of clinical seizures. CONCLUSIONS: The current study increases the number of PRDM8-related cases and expands the phenotypic spectrum of mutations in the PRDM8 gene. Both reported PRDM8-related families presented intra and inter-familial heterogeneity and they have originated from the Middle East. Thus, it seems the PRDM8 mutations should be considered not only in LD but also in other neurodegenerative disorders such as a complicated HSP-like phenotype, especially in this region.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Paraplegia Espástica Hereditária , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Histona Metiltransferases/genética , Humanos , Irã (Geográfico) , Doença de Lafora/diagnóstico , Doença de Lafora/genética , Doença de Lafora/patologia , Mutação/genética , Convulsões , Paraplegia Espástica Hereditária/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...